(filtre écologique haute pression)

Filtres haute pression Max. 700 l/min - 450 bar

Une solution de filtration pression compacte et rentable

Conçue avec la technologie de filtration brevetée *i*protect®

L'EPF (Ecological High Pressure Filter, filtre écologique haute pression) iprotect® de Parker a pour objectif de fournir une filtration de grande qualité aux systèmes hydrauliques, en offrant de nouvelles possibilités de réduire les coûts d'acquisition par l'amélioration de leur productivité et de leur rentabilité.

L'EPF iprotect® a été conçu selon une approche radicale et innovante et s'adapte à une capacité de débit pouvant aller jusqu'à 700 l/min. pour une pression de service de 450 bar.

Une nouvelle conception brevetée de l'élément filtrant permet d'intégrer la valve de bypass et l'ame centrale de l'élément filtrant comme des pièces réutilisables dans le bol.

Le produit est ainsi infaillible car il est impossible d'oublier de réinstaller les pièces réutilisables.

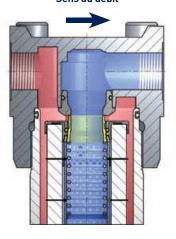
Avec moins d'espace disponible pour les filtres, Parker a pris en compte la nécessité de proposer des solutions plus compactes. Le fait que l'élément filtrant reste à l'intérieur du bol lorsqu'il est remplacé est une caractéristique unique. Ce système permet d'économiser 500 mm d'espace, en comparaison de filtres haute pression traditionnels.

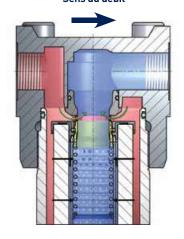
Caractéristiques du produit :

La conception de l'élément filtrant garantit la qualité de filtration, qui influe directement sur la propreté de l'huile : elle empêche l'utilisation d'éléments filtrants pirates dont la qualité du média filtrant est inconnue. Cette sécurité intégrée a un effet positif direct, sur la productivité et la rentabilité de l'équipement.

- Une qualité de filtration garantie
- Des solutions plus compactes sont possibles
- L'élément filtrant reste dans le bol lors de l'entretien du filtre
- Une réduction des déchets de 50 %
- Système à sécurité intégrée évitant toute erreur de montage
- Des opportunités uniques de labellisation pour les constructeurs
- Une intégration facile dans les blocs forés.

Caractéristiques	Avantages	Bénéfices
Élément filtrant breveté	Utilisation de pièces pirate évitée	Qualité de filtration garantie
L'élément filtrant reste dans le bol	Diminution de l'espace nécessaire pour	Des solutions plus compactes sont possibles
	remplacer/entretenir le filtre	Réduction de plus de 40 % du temps d'entretien du filtre
Conception respectueuse de l'environnement	Réduction de plus de 50 % des déchets dans l'environnement	Coûts de destruction moins élevés
Conception facilitant la maintenance du produit	Aucune manipulation de pièces détachées réutilisables	Aucun risque de commettre des erreurs lors du remplacement d'un élément filtrant
La valve de bypass fait partie intégrante du bol	Intégration simple dans les blocs forés	Bloc foré plus compact et à coût réduit (une seule cavité est requise)
	Diminution de la perte de charge du filtre	Économie d'énergie pour une efficacité accrue du système
Grand choix d'indicateurs de pression différentielle	Controle continu de l'état des éléments filtrants	Optimisation de la durée de vie de l'élément filtrant
		Contribution à une maintenance planifiée


Applications typiques


- Matériel mobile
- Système d'entraînement mobile
- Filtration de la ligne de pilotage
- Servocommandes
- Applications avec débit dans les deux sens
- Groupes hydrauliques industriels
- Systèmes de commande

La technologie de valve de bypass brevetée série EPF iprotect® de Parker

Les tarages de bypass sont possibles jusqu'à 7 bar ou sont complètement bloqués avec des éléments filtrants brevetés à haute résistance à l'écrasement. Le principe se base sur une mesure de la pression différentielle à travers l'élément filtrant. Lors du bypass, seule une partie du débit principal passe à travers la valve de bypass.

L'EPF iprotect® utilise la dernière génération de média filtrant Microglass III. La conception brevetée de l'élément filtrant assure sa qualité de filtration.

Filtres haute pression

Sélection de l'élément filtrant EPF

Élément standard iprotect® (code QI)

- Résistance à l'écrasement 25 bar
- Tarage du by-pass 3,5 / 5 / 7 bar

Élément iprotect® avec valve débit dans les 2 sens (code QIR)

- Résistance à l'écrasement 25 bar
- Tarage du by-pass 3,5 bar

Élément standard iprotect® haute résistance (code QIH)

- Résistance à l'écrasement 210 bar
- By-pass bouché

Élément iprotect® avec marquage client (sur demande)

- Créer votre marque
- Protéger votre marché des pièces de rechange

Références de l'élément filtrant de rechange EPF Type QI Type QIH

EPF Taille 1 L1 2 microns	944418Q
EPF Taille 1 L1 5 microns	944419Q
EPF Taille 1 L1 10 microns	944420Q
EPF Taille 1 L1 20 microns	944421Q
EPF Taille 2 L1 2 microns	944426Q
EPF Taille 2 L1 5 microns	944427Q
EPF Taille 2 L1 10 microns	944428Q
EPF Taille 2 L1 20 microns	944429Q
EPF Taille 2 L2 2 microns	944430Q
EPF Taille 2 L2 5 microns	944431Q
EPF Taille 2 L2 10 microns	944432Q
EPF Taille 2 L2 20 microns	944433Q
EPF Taille 3 L1 2 microns	944434Q
EPF Taille 3 L1 5 microns	944435Q
EPF Taille 3 L1 10 microns	944436Q
EPF Taille 3 L1 20 microns	944437Q
EPF Taille 3 L2 2 microns	944438Q
EPF Taille 3 L2 5 microns	944439Q
EPF Taille 3 L2 10 microns	944440Q
EPF Taille 3 L2 20 microns	944441Q
EPF Taille 4 L1 2 microns	944442Q
EPF Taille 4 L1 5 microns	944443Q
EPF Taille 4 L1 10 microns	944444Q
EPF Taille 4 L1 20 microns	944445Q
EPF Taille 4 L2 2 microns	944446Q
EPF Taille 4 L2 5 microns	944447Q
EPF Taille 4 L2 10 microns	944448Q
EPF Taille 4 L2 20 microns	944449Q
EPF Taille 5 L1 2 microns	944450Q
EPF Taille 5 L1 5 microns	944451Q
EPF Taille 5 L1 10 microns	944452Q
EPF Taille 5 L1 20 microns	944453Q

EPF Haute résistance Taille 1 L1 2 microns 944481Q EPF Haute résistance Taille 1 L1 5 microns 944482Q EPF Haute résistance Taille 1 L1 10 microns 944483Q EPF Haute résistance Taille 1 L1 20 microns 944484Q 944485Q EPF Haute résistance Taille 1 L2 2 microns 944486Q EPF Haute résistance Taille 1 L2 5 microns EPF Haute résistance Taille 1 L2 10 microns 9444870 EPF Haute résistance Taille 1 L2 20 microns 944488Q EPF Haute résistance Taille 2 L1 2 microns 944489Q EPF Haute résistance Taille 2 L1 5 microns 944490Q EPF Haute résistance Taille 2 L1 10 microns EPF Haute résistance Taille 2 L1 20 microns 944492Q 944493Q EPF Haute résistance Taille 2 L2 2 microns EPF Haute résistance Taille 2 L2 5 microns 9444940 EPF Haute résistance Taille 2 L2 10 microns 9444950 EPF Haute résistance Taille 2 L2 20 microns 944496Q EPF Haute résistance Taille 3 L1 2 microns 944497Q EPF Haute résistance Taille 3 L1 5 microns 944498Q EPF Haute résistance Taille 3 L1 10 microns 944500Q EPF Haute résistance Taille 3 L1 20 microns 944501Q EPF Haute résistance Taille 3 L2 2 microns EPF Haute résistance Taille 3 L2 5 microns 9445020 EPF Haute résistance Taille 3 L2 10 microns 944503Q EPF Haute résistance Taille 3 L2 20 microns 944504Q EPF Haute résistance Taille 4 L1 2 microns 944505Q EPF Haute résistance Taille 4 L1 5 microns 944506Q 944507Q EPF Haute résistance Taille 4 L1 10 microns 944508Q EPF Haute résistance Taille 4 L1 20 microns 9445090 EPF Haute résistance Taille 4 L2 2 microns EPF Haute résistance Taille 4 L2 5 microns 944510Q EPF Haute résistance Taille 4 L2 10 microns 944511Q EPF Haute résistance Taille 4 L2 20 microns 944512Q EPF Haute résistance Taille 5 L1 2 microns 944513Q EPF Haute résistance Taille 5 L1 5 microns 944514Q EPF Haute résistance Taille 5 L1 10 microns 944515Q EPF Haute résistance Taille 5 L1 20 microns 944516Q

Type QIR

EPF Taille 1 L1 2 microns avec flux inverse	944561Q
EPF Taille 1 L1 5 microns avec flux inverse	944562Q
EPF Taille 1 L1 10 microns avec flux inverse	944563Q
EPF Taille 1 L1 20 microns avec flux inverse	944564Q
EPF Taille 1 L2 2 microns avec flux inverse	944565Q
EPF Taille 1 L2 5 microns avec flux inverse	944566Q
EPF Taille 1 L2 10 microns avec flux inverse	944567Q
EPF Taille 1 L2 20 microns avec flux inverse	944568Q
EPF Taille 2 L1 2 microns avec flux inverse	944569Q
EPF Taille 2 L1 5 microns avec flux inverse	944570Q
EPF Taille 2 L1 10 microns avec flux inverse	944571Q
EPF Taille 2 L1 20 microns avec flux inverse	944572Q
EPF Taille 2 L2 2 microns avec flux inverse	944573Q
EPF Taille 2 L2 5 microns avec flux inverse	944574Q
EPF Taille 2 L2 10 microns avec flux inverse	944575Q
EPF Taille 2 L2 20 microns avec flux inverse	944576Q
EPF Taille 3 L1 2 microns avec flux inverse	944577Q
EPF Taille 3 L1 5 microns avec flux inverse	944578Q
EPF Taille 3 L1 10 microns avec flux inverse	944579Q
EPF Taille 3 L1 20 microns avec flux inverse	944580Q
EPF Taille 3 L2 2 microns avec flux inverse	944581Q
EPF Taille 3 L2 5 microns avec flux inverse	944582Q
EPF Taille 3 L2 10 microns avec flux inverse	944583Q
EPF Taille 3 L2 20 microns avec flux inverse	944584Q
EPF Taille 4 L1 2 microns avec flux inverse	944585Q
EPF Taille 4 L1 5 microns avec flux inverse	944586Q
EPF Taille 4 L1 10 microns avec flux inverse	944587Q
EPF Taille 4 L1 20 microns avec flux inverse	944588Q
EPF Taille 4 L2 2 microns avec flux inverse	944589Q
EPF Taille 4 L2 5 microns avec flux inverse	944590Q
EPF Taille 4 L2 10 microns avec flux inverse	944591Q
EPF Taille 4 L2 20 microns avec flux inverse	944592Q
EPF Taille 5 L1 2 microns avec flux inverse	944593Q
EPF Taille 5 L1 5 microns avec flux inverse	944594Q
EPF Taille 5 L1 10 microns avec flux inverse	944595Q
EPF Taille 5 L1 20 microns avec flux inverse	944596Q

Protection de votre système et de l'environnement

Protège les performances et la rentabilité de votre système

La nouvelle génération iprotect® d'éléments filtrants offre de hautes performances de filtration alliées à une technologie brevetée. Sa conception sur mesure empêche l'utilisation d'alternative pirate.

Diminution de l'espace nécessaire pour positionner le filtre

Des solutions plus compactes sont envisageables puisque l'élément filtrant reste dans le bol lors de son remplacement. En comparaison avec les solutions traditionnelles, non seulement il permet un gain d'espace mais il diminue également le temps de maintenance lors du remplacement de l'élément filtrant.

Réduction des coûts et protection de l'environnement

Qu'est-il nécessaire de faire pour introduire une nouvelle conception innovante qui protège l'environnement ?
L'EPF iprotect® de Parker contient un bypass et une ame centrale supportant l'élément filtrant, réutilisables et intégrés au bol. Cette solution empêche la manipulation de pièces réutilisables lors du remplacement de l'élément et réduit de plus de 50 % le poids des déchets.

Technologie astucieuse de valve

La technologie de valve à commande hydraulique de Parker est appliquée à la valve de bypass réutilisable. Cette valve

étanche est pourvue d'une interface avec l'élément filtrant brevetée, ce qui assure l'utilisation exclusive de pièces d'origine. Avec des réglages de bypass jusqu'à 7 bar, la filtration dans des conditions de démarrage à froid ainsi que des solutions plus compactes peuvent être réalisées. La valve optimise également l'écoulement du fluide, diminuant la perte de charge à travers le filtre.

Intégration plus simple

Parker a lancé la tendance : intégrer la filtration dans les blocs forés.

Avec l'EPF iprotect[®] de Parker, nous sommes passés à la vitesse

supérieure en matière de conception. Une seule cavité est nécessaire pour positionner le filtre, au lieu de deux, grâce à l'intégration de la valve de bypass réutilisable dans le bol, pour un gain d'espace et de coûts.

Des solutions personnalisées

Les technologies de commande et de mouvement de Parker offrent de nouvelles opportunités à nos clients. Les blocs

forés spécifiques et filtres duplex, comme ceux de cet exemple, offrent une commutation automatique totale. L'EPF iprotect[®] aide à mettre au point de nouvelles solutions pour améliorer votre productivité et votre rentabilité.

Un « gène » protecteur

Les performances et la rentabilité des systèmes dépendent directement du média filtrant.

Il va sans dire que les produits brevetés de Parker empêchent l'utilisation d'un filtre aux performances inconnues, compromettant la sécurité et les performances. Notre média Microglass III est mis à niveau à tout moment et agit comme « gène » protecteur du système.

Débit dans les deux sens

L'EPF de Parker peut être équipé d'un débit inverse en option. Cette valve est intégrée dans la coupelle d'extrémité de

l'élément et isole le média filtrant en cas de débit inverse.

Une nouvelle conception brevetée de l'élément filtrant permet d'intégrer la valve de bypass et l'ame centrale supportant l'élément filtrant comme des pièces réutilisables dans le bol. Cela permet de réduire les coûts lors de l'intégration du filtre haute pression dans les blocs forés. Mais cela diminue aussi les déchets de plus de 50 % lors du changement de l'élément filtrant puisque l'ame centrale de l'élément fait partie intégrante du bol.

La conception de l'EPF iprotect® est exclusive, il n'est pas nécessaire de réinstaller des pièces réutilisables contrairement à d'autres filtres. Le produit est ainsi infaillible car il est impossible d'oublier de réinstaller les pièces réutilisables.

Remplacement de l'élément filtrant :

- Purger le corps de filtre en ouvrant l'orifice de la purge.
- Grâce au verrouillage du filtre, l'élément filtrant reste dans le bol.
- Dégager l'élément filtrant usagé. L'ame centrale et la valve de bypass font partie intégrante du bol
- La filtration va de « l'extérieur vers l'intérieur », l'ame centrale de l'élément filtrant se trouve du côté de l'huile propre.
- Il suffit de positionner l'élément neuf dans le bol.
- Serrer le bol avec l'élément dans la tête du filtre.

Taille 1

Spécifications de l'EPF iprotect® Taille 1

Spécifications

Débit nominal de 40 l/min

Pressions admissibles

Pression de service maximale autorisée de

450 ba

Test de résistance du corps de filtre 10^{6} impulsions 0-450 bar

Raccords

Les raccords d'entrée et de sortie sont taraudés.

Type de raccord

Taraudage G½
Taraudage SAE 8

Corps de filtre

Tête en fonte (GSI)

Bol en acier

Type de joint

Nitrile, fluoroélastomère

Plage de température de service

Joint en nitrile : -40 °C à +100 °C

Joint en fluoroélastomère : -20 °C à +120 °C

Valve de bypass et tarages d'indicateur

Bypass Indicateur 3,5 bar 2,5 bar 5,0 bar 3,5 bar 7,0 bar 5,0 bar sans bypass 5,0 bar

Élément filtrant

Degré de filtration

Déterminé par un test multipass conforme

à l'ISO16889

Caractéristique de fatigue due au débit
Le média filtrant est renforcé pour une durée de

Le média filtrant est renforcé pour une durée de vie optimale (ISO 3724)

Microglass III

Soutenu par un maillage métallique revêtu d'époxy, des coupelles d'extrémité en composite renforcé et ame centrale métallique. Résistance à l'écrasement de 25 bar (ISO 2941)

Éléments filtrants à haute résistance à

l'écrasement

À utiliser lorsque l'option sans bypass est sélectionnée Résistance à l'écrasement de 210 bar

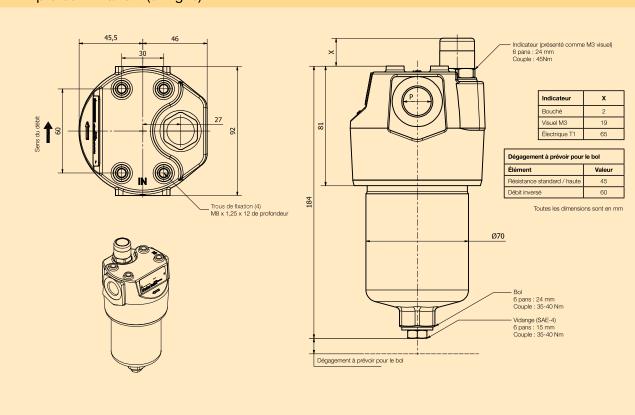
Indicateurs de colmatage

Indication de la pression différentielle :

2,5 +/- 0,3 bar 3,5 +/- 0,3 bar 5,0 +/- 0,3 bar M3 visuel T1 électrique

F1 électronique (PNP) F2 électronique (NPN)

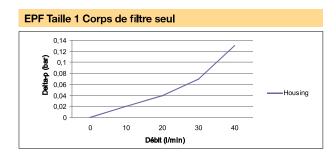
Les versions Atex sont disponibles à la demande

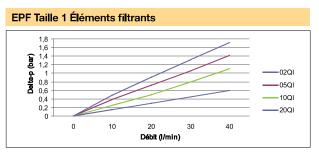

Poids (kg)

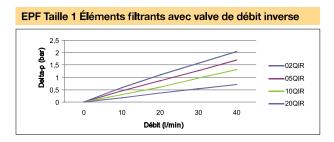
EPF Taille 1:3

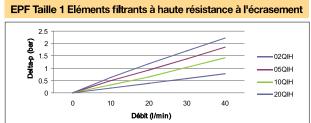
Compatibilité fluidique

- Huiles minérales hydrauliques H à classe HLPD (DIN51524)
- · Fluides de travail DIN ISO 2943
- · Liquides de lubrification ISO 6743, APJ, DIN 51517, ACEA, ASTM
- · Huiles végétales
- · Eau-glycols 60/40
- Sur demande Esters phosphatés de qualité industrielle
- · Huiles synthétiques non agressives
- Huiles biodégradables non agressives (HETG, HEPG et HEES à VDMA 24568)


EPF iprotect® - Taille 1 (en ligne)






EPF iprotect® Taille 1 Courbes de perte de charge

Avec un tarage de bypass de 3,5 bar, la perte de charge initiale maximale recommandée est de 1,2 bar. Avec un tarage de bypass de 7,0 bar, la perte de charge initiale maximale recommandée est de 2,3 bar. Si la viscosité du média utilisé n'est pas de 30 cSt, la perte de charge sur le filtre peut être estimée comme suit : Δp total = Δp corps + (Δp élément filtrant x viscosité de travail/30).

Taille 2

Spécifications de l'EPF iprotect® Taille 2

Spécifications

Débit nominal >100 l/min

Pressions nominales

Pression de service maximale autorisée de

450 bar

Test de résistance du corps de filtre

10⁶ impulsions 0-450 bar

Raccords

Les raccords d'entrée et de sortie sont taraudés à l'intérieur.

Type de raccord

Taraudage G¾

Taraudage SAE12

Taraudage M27, ISO 6149

Bride SAE ¾ = 6000M

Bride SAE 3/4 = 6000

Flasquable ¾ = 6000M

Corps du filtre

Tête en fonte (GSI)

Bol en acier

Type de joint

Nitrile, fluoroélastomère

Plage de température de service

Joint en nitrile : -40 °C à +100 °C

Joint en fluoroélastomère : -20 °C à +120 °C

Vanne bypass et tarages d'indicateur

Bypass Indicateur

3,5 bar 2,5 bar 5,0 bar 3,5 bar 7,0 bar 5,0 bar

sans bypass 5,0 bar

Élément filtrant

Degré de filtration

Déterminé par un test à multipass conforme à l'ISO16889

Caractéristiques de fatigue due au débit

Le média filtrant est renforcé pour une durée de vie optimale (ISO 3724)

Microglass III

Soutenu par un maillage métallique revêtu d'époxy, des coupelles d'extrémité en composite renforcé et ame centrale métallique réutilisable. Résistance à l'écrasement de 25 bar (ISO 2941)

Éléments filtrants à haute résistance à l'écrasement

À utiliser lorsque l'option sans bypass est sélectionnée

Résistance à l'écrasement de 210 bar (ISO 2941)

Indicateurs de colmatage

Indication de la pression différentielle :

2,5 +/- 0,3 bar 3,5 +/- 0,3 bar 5,0 +/- 0,3 bar

M3 visuel

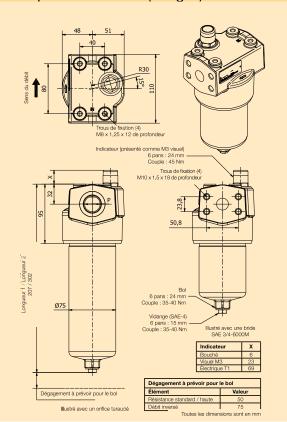
T1 électrique

F1 électronique (PNP)

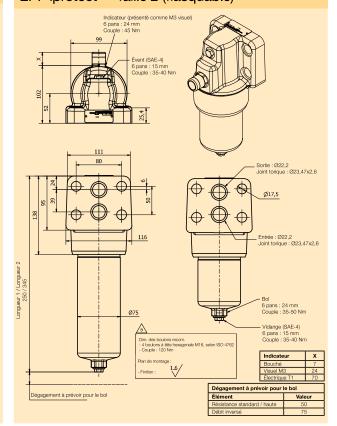
F2 électronique (NPN)

Les versions Atex sont disponibles à la demande

Poids (kg)

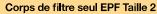

EPF Taille 2 longueur 1 : 4,2 EPF Taille 2 longueur 2 : 5,7

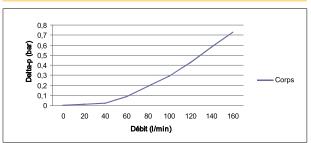
Compatibilité fluidique

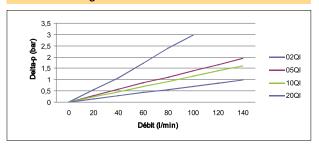

Huiles minérales hydrauliques H à classe HLPD (DIN51524)

- · Fluides de travail DIN ISO 2943
- Liquides de lubrification ISO 6743, APJ, DIN 51517, ACEA, ASTM
- · Huiles végétales
- Eau-glycols 60/40
- · Sur demande Esters phosphatés de qualité industrielle
- Huiles synthétiques non agressives
- Huiles biodégradables non agressives (HETG, HEPG et HEES à VDMA 24568)

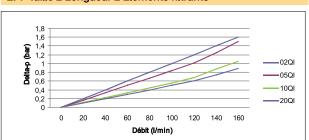
EPF iprotect® - Taille 2 (en ligne)



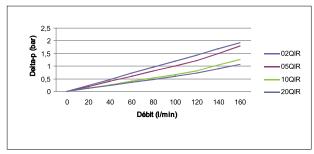

EPF iprotect® - Taille 2 (flasquable)

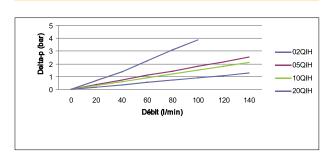

EPF iprotect® Taille 2 Courbes de perte de charge

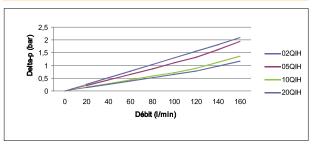
Avec un tarage de bypass de 3,5 bar, la perte de charge initiale maximale recommandée est de 1,2 bar. Avec un tarage de bypass de 7,0 bar, la perte de charge initiale maximale recommandée est de 2,3 bar. Si la viscosité du média utilisé n'est pas de 30 cSt, la perte de charge sur le filtre peut être estimée comme suit : Δp total = Δph corps + (Δpe élément filtrant x viscosité de travail/30).



EPF Taille 2 Longueur 1 Éléments filtrants


EPF Taille 2 Longueur 2 Éléments filtrants


EPF Taille 2 Longueur 1 Éléments filtrants avec valve de débit inverse


EPF Taille 2 Longueur 2 Éléments filtrants avec valve de débit inverse

EPF Taille 2 Longueur 1 Eléments filtrants à haute résistance à l'écrasement

EPF Taille 2 Longueur 2 Eléments filtrants à haute résistance à l'écrasement

Taille 3

Spécifications de l'EPF iprotect® Taille 3

Spécifications

Débit nominal >160 l/min

Pressions nominales

Pression de service maximale autorisée de

Test de résistance du corps de filtre

10⁶ impulsions 0-450 bar

Raccords

Les raccords d'entrée et de sortie sont taraudés

Type de raccord

Taraudage G1

Taraudage SAE16

Taraudage M33, ISO 6149

Bride SAE 1 = 6000M

Bride SAE 1 = 6000

Corps du filtre

Tête en fonte (GSI)

Bol en acier

Type de joint

Nitrile, fluoroélastomère

Plage de température de service

Joint en nitrile : -40 °C à +100 °C

Joint en fluoroélastomère : -20 °C à +120 °C

Valve de bypass et tarages d'indicateur

Bypass Indicateur

2,5 bar 3.5 bar 5.0 bar 3.5 bar 7,0 bar 5.0 bar

sans bypass 5,0 bar Élément filtrant

Degré de filtration

Déterminé par un test multipass

conforme à l'ISO16889

Caractéristiques de fatigue due au débit

Le média filtrant est renforcé pour une durée de vie optimale (ISO 3724)

Microglass III

Soutenu par un maillage métallique revêtu d'époxy, des coupelles d'extrémité en composite renforcé et ame centrale métallique réutilisable. Résistance à l'écrasement de 25 bar (ISO 2941)

Éléments filtrants à haute résistance à

l'écrasement

À utiliser lorsque l'option sans bypass est sélectionnée

Résistance à l'écrasement de 210 bar (ISO 2941)

Indicateurs de colmatage

Indication de la pression différentielle :

2,5 +/- 0,3 bar 3,5 +/- 0,3 bar 5,0 +/- 0,3 bar M3 visuel

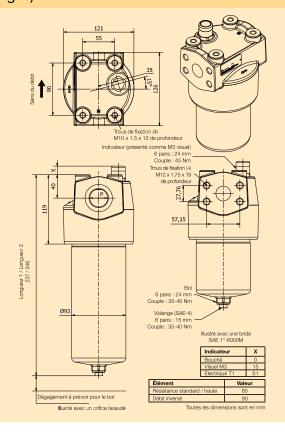
T1 électrique

F1 électronique (PNP)

F2 électronique (NPN)

Les versions Atex sont disponibles à la demande

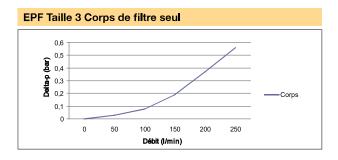
Poids (kg)

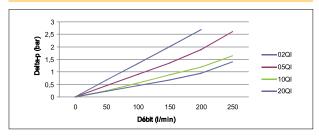

EPF Taille 3 longueur 1:6,7 EPF Taille 3 longueur 2:9,2

Compatibilité fluidique

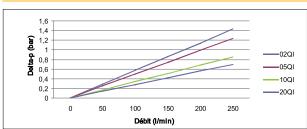
Huiles minérales hydrauliques H à classe HLPD (DIN51524)

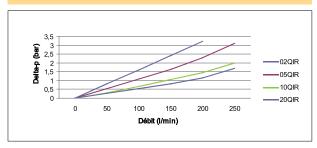
- Fluides de travail DIN ISO 2943
- Liquides de lubrification ISO 6743, APJ,
- DIN 51517, ACEA, ASTM Huiles végétales
- Eau-glycols 60/40
- Sur demande Esters phosphatés de qualité industrielle
- Huiles synthétiques non agressives
- Huiles biodégradables non agressives (HETG, HEPG et HEES à VDMA 24568)

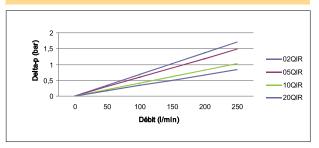

EPF iprotect® - Taille 3 (en ligne)

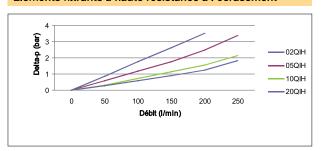


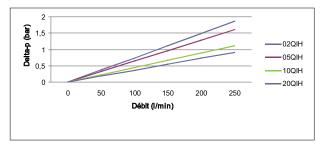
EPF iprotect® Taille 3 Courbes de perte de charge


Avec un tarage de bypass de 3,5 bar, la perte de charge initiale maximale recommandée est de 1,2 bar. Avec un tarage de bypass de 7,0 bar, la perte de charge initiale maximale recommandée est de 2,3 bar. Si la viscosité du média utilisé n'est pas de 30 cSt, la perte de charge sur le filtre peut être estimée comme suit : Δp total = Δph corps + (Δpe élément filtrant x viscosité de travail/30).


EFP Taille 3 Longueur 1 Éléments filtrants


EPF Taille 3 Longueur 2 Éléments filtrants


EFP Taille 3 Longueur 1 Éléments filtrants avec valve de débit inverse


EPF Taille 3 Longueur 2 Éléments filtrants avec valve de débit inverse

EFP Taille 3 Longueur 1 Eléments filtrants à haute résistance à l'écrasement

EPF Taille 3 Longueur 2 Eléments filtrants à haute résistance à l'écrasement

Taille 4

Spécifications de l'EPF iprotect® Taille 4

Spécifications

Débit nominal >320 l/min

Pressions nominales

Pression de service maximale autorisée de

Test de résistance du corps de filtre

10⁶ impulsions 0-450 bar

Raccords

Les raccords d'entrée et de sortie sont taraudés

Type de raccord

Taraudage G1¾

Taraudage G11/2

Taraudage SAE20

Taraudage SAE24

Taraudage M42, ISO 6149

Bride SAE 11/4 = 6000M

Bride SAE 11/4 = 6000

Flasquable 11/4 = 6000M

Corps du filtre

Tête en fonte (GSI) Bol en acier

Type de joint

Nitrile, fluoroélastomère

Plage de température de service

Joint en nitrile : -40 °C à +100 °C

Joint en fluoroélastomère : -20 °C à +120 °C

Valve de bypass et tarages d'indicateur

Bypass Indicateur

2,5 bar 3.5 bar 3.5 bar 5.0 bar 7,0 bar 5.0 bar sans bypass 7,0 bar

Élément filtrant

Degré de filtration

Déterminé par un test multipass

conforme à l'ISO16889

Caractéristiques de fatigue due au débit

Le média filtrant est renforcé pour une durée de vie optimale (ISO 3724)

Microglass III

Soutenu par un maillage métallique revêtu d'époxy, des coupelles d'extrémité en composite renforcé et ame centrale métallique réutilisable. Résistance à l'écrasement de 25 bar (ISO 2941)

Éléments filtrants à haute résistance à

l'écrasement

À utiliser lorsque l'option sans bypass est sélectionnée

Résistance à l'écrasement de 210 bar (ISO 2941)

Indicateurs de colmatage

Indication de la pression différentielle :

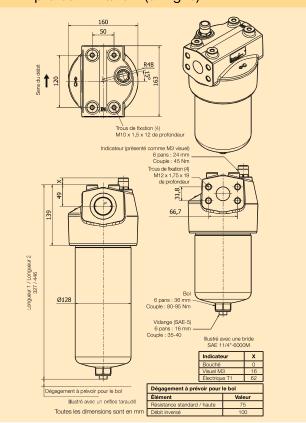
2,5 +/- 0,3 bar 3,5 +/- 0,3 bar 5,0 +/- 0,3 bar M3 visuel

T1 électrique

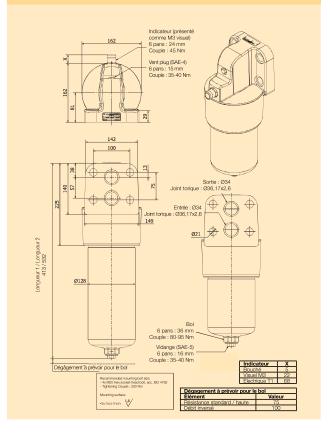
F1 électronique (PNP) F2 électronique (NPN)

Les versions Atex sont disponibles à la demande

Poids (kg)

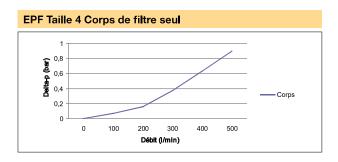

EPF Taille 4 longueur 1: 15,8 EPF Taille 4 longueur 2: 20,3

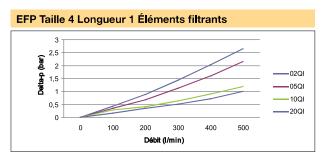
Compatibilité fluidique

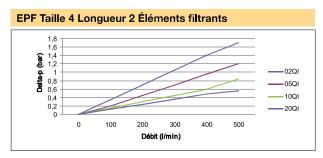

Huiles minérales hydrauliques H à classe HLPD (DIN51524)

- Fluides de travail DIN ISO 2943
- Liquides de Iubrification ISO 6743, APJ,
- DIN 51517, ACEA, ASTM
- Huiles végétales Eau-glycols 60/40
- Sur demande Esters phosphatés de qualité industrielle
- Huiles synthétiques non agressives
- Huiles biodégradables non agressives (HETG, HEPG et HEES à VDMA 24568)

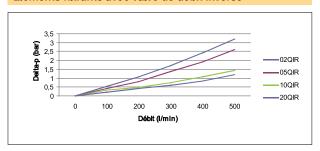
EPF iprotect® - Taille 4 (en ligne)

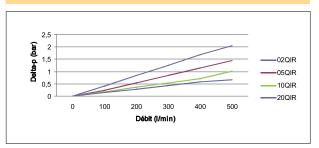

EPF iprotect® - Taille 4 (flasquable)

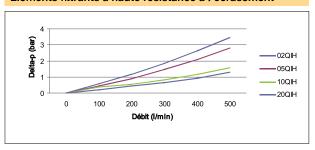


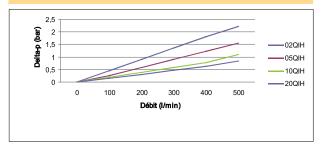


EPF iprotect® Taille 4 Courbes de perte de charge


Avec un tarage de bypass de 3,5 bar, la perte de charge initiale maximale recommandée est de 1,2 bar. Avec un tarage de bypass de 7,0 bar, la perte de charge initiale maximale recommandée est de 2,3 bar. Si la viscosité du média utilisé n'est pas de 30 cSt, la perte de charge sur le filtre peut être estimée comme suit : Δp total = Δph corps + (Δpe élément filtrant x viscosité de travail/30).




EPF Taille 4 Longueur 1 Éléments filtrants avec valve de débit inverse


EPF Taille 4 Longueur 2 Éléments filtrants avec valve de débit inverse

EFP Taille 4 Longueur 1 Eléments filtrants à haute résistance à l'écrasement

EPF Taille 4 Longueur 2 Eléments filtrants à haute résistance à l'écrasement

Taille 5

Spécifications de l'EPF iprotect® Taille 5

Spécifications

Débit nominal >320 l/min

Pressions nominales

Pression de service maximale autorisée de

Test de résistance du corps de filtre

10⁶ impulsions 0-450 bar

Raccords

Les raccords d'entrée et de sortie sont taraudés

Type de raccord

Taraudage G11/2

Taraudage SAE24

Flasquable Bride SAE 11/2 - 6000M

Tête en fonte (GSI)

Bol en acier

Type de joint

Nitrile, fluoroélastomère

Plage de température de service

Joint en nitrile : -40 °C à +100 °C

Joint en fluoroélastomère : -20 °C à +120 °C

Valve de bypass et tarages d'indicateur

Bypass Indicateur

2,5 bar 3.5 bar 5.0 bar 3.5 bar 7,0 bar 5.0 bar sans bypass 5,0 bar

Élément filtrant

Degré de filtration

Déterminé par un test multipass conforme à l'ISO16889

Caractéristiques de fatigue due au débit

Le média filtrant est renforcé pour une durée de vie optimale (ISO 3724)

Microglass III

Soutenu par un maillage métallique revêtu d'époxy, des coupelles d'extrémité en composite renforcé et ame centrale métallique réutilisable. Résistance à l'écrasement de 25 bar (ISO 2941)

Éléments filtrants à haute résistance à

l'écrasement

À utiliser lorsque l'option sans bypass est sélectionnée

Résistance à l'écrasement de 210 bar (ISO 2941)

Indicateurs de colmatage

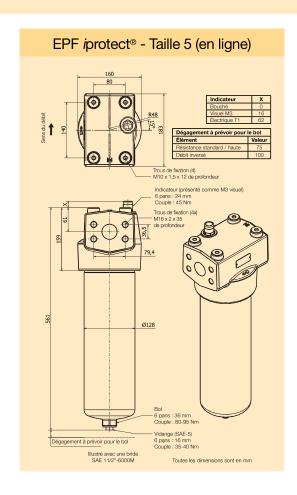
Indication de la pression différentielle :

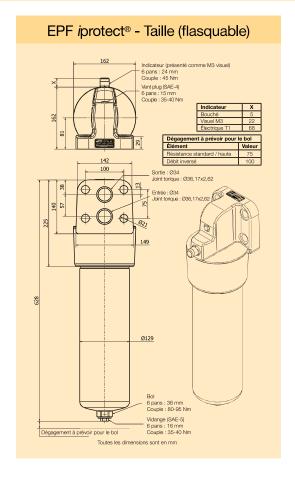
2,5 +/- 0,3 bar 3,5 +/- 0,3 bar 5,0 +/- 0,3 bar M3 visuel

T1 électrique F1 électronique (PNP)

F2 électronique (NPN)

Les versions Atex sont disponibles à la demande

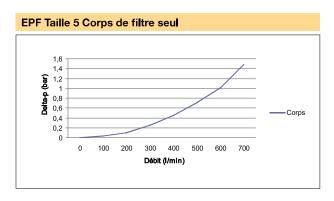

Poids (kg)

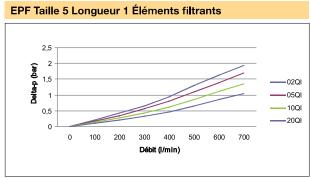

EPF Taille 5 longueur 1 : 31

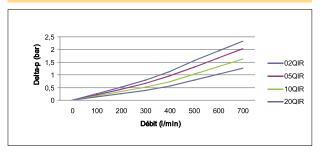
Compatibilité fluidique

Huiles minérales hydrauliques H à classe HLPD (DIN51524)

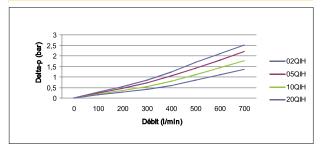
- Fluides de travail DIN ISO 2943
- Liquides de lubrification ISO 6743, APJ, DIN 51517, ACEA, ASTM
- Huiles végétales
- Eau-glycols 60/40
- Sur demande Esters phosphatés de qualité
- Huiles synthétiques non agressives
- Huiles biodégradables non agressives (HETG, HEPG et HEES à VDMA 24568)






EPF iprotect® Taille 5 Courbes de perte de charge

Avec un tarage de bypass de 3,5 bar, la perte de charge initiale maximale recommandée est de 1,2 bar. Avec un tarage de bypass de 7,0 bar, la perte de charge initiale maximale recommandée est de 2,3 bar. Si la viscosité du média utilisé n'est pas de 30 cSt, la perte de charge sur le filtre peut être estimée comme suit : Δp total = Δph corps + (Δpe élément filtrant x viscosité de travail/30).



EPF Taille 5 Longueur 1 Éléments filtrants avec valve de débit inverse

EPF Taille 5 Longueur 1 Eléments filtrants à haute résistance à l'écrasement

Liste des pièces

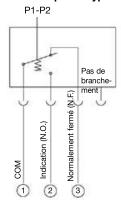
Som.	Description	Référence
1	Indicateur	Sur demande
2	Bouchon	Sur demande
3	Tête de filtre	Sur demande
4	Élément filtrant	Voir le tableau de l'élément
5	Bague	Inclus dans les kits de joints / élément filtrant
6	Joint torique	Inclus dans les kits de joints / élément filtrant
7	Bol	Sur demande
8	Bouchon de purge	Sur demande

Références des kits de joints

Filtre	Nitrile	Fluoroélastomère
EPF 1	EPFSK001	EPFSK011
EPF 2	EPFSK002	EPFSK012
EPF 3	EPFSK003	EPFSK013
EPF 4 + 5	EPFSK004	EPFSK014

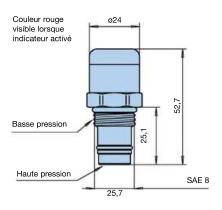
Vue éclatée schématique des pièces détachées Voir ci-contre pour la liste des pièces et les kits de joints

Options d'indicateur

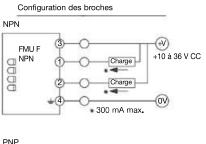

Indicateurs Δp FMU et indicateurs de pression

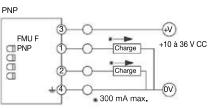
FMUT électrique

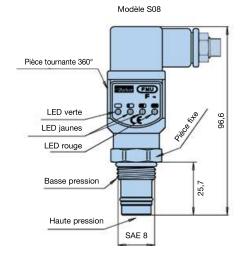
Tension nominale	Onarge non made (A)					Charge inductive (A) Cour					
Hommale	Charge re	ésistive	Charge d	e la lampe	Charge in	Charge inductive		u moteur	d'appel (A)		
	N.F.	N.O.	N.F.	N.O.	N.F.	N.O.	N.F.	N.O.	N.F.	N.O.	
125VAC		5	1,5	0,7	;	3	2,5	1,3			
250VAC		3	1,0	1,0 0,5		2		0,8	20	10	
8VDC		5	2	2		4	3		max.	10 max.	
14VDC		5	2	2		4	3				
30VDC		4	2		3	3	3				
125VDC	0	,4	0,05		0,4	0,4	0,05				
250VDC	0	,2	0,	03	0,2	0,2	0,03				


Indice de protection	IP65
Connecteur électrique	DIN 43650
Classe de surtension	II (EN61010-1)

Configuration des broches Indicateur électrique de type T1






Réinitialisation visuelle automatique FMUM3 Fonctionnement

FMUF électronique

Disjonction thermique (tarage par défaut : +20 °C)

• L'indicateur ne fonctionne que si la température est supérieure au tarage.

	U					
Tarage de l'ind.	É	tat de	Sortie			
de pression	٧	J1	J2	R		
< 50 %	\otimes				-	
50 %	\otimes	\otimes			-	
75 %	\otimes	\otimes	\otimes	[2	actif
100 %	\otimes	\otimes	\otimes	⊗ [1	actif

Indice de protection	IP65
Connecteur électrique	DIN 43650, connecteur PG9 ou en option M12 à 4 broches
Tension d'alimentation	+10 à 36 V CC
*Sortie d'indicateur	36 V CC/300 mA max.
Type de sortie :	N.O. ou N.F./NPN ou PNP

Remarque : ne pas brancher directement les bornes 1 ou 2 (sans charge) à l'alimentation car cela risquerait d'endommager le matériel.

Efficacité de l'élément filtrant

Coefficient beta (ß) moyen (ISO 16889) / taille particulaire µm [c]						Code		
$\beta x(c)=2$ $\beta x(c)=10$ $\beta x(c)=75$ $\beta x(c)=100$ $\beta x(c)=200$ $\beta x(c)=1000$								
	Efficacité	, sur la base du co	oefficient bêta(Bx)	ci-dessus		Microglass III	Élément avec valve de	Elément haute résistance à
50,0%	90,0%	98,7%	99,0%	99,5%	99,9%	jetable	débit inverse	l'écrasement
N.D.	N.D.	N.D.	N.D.	N.D.	4,5	02QI	02QIR	02QIH
N.D.	N.D.	4,5	5	6	7	05QI	05QIR	05QIH
N.D.	6	8,5	9	10	12	10QI	10QIR	10QIH
6	11	17	18	20	22	20QI	20QIR	20QIH

Codes de commande. Références standard

Filtre complet	Référence	Débit (l/min)	Réf. du modèle	Long. de l'élément	Degré de filtration (micron)	Joints	Indicateur	Bypass (bar)	Orifices	Éléments filtrants de rechange
	EPF1105QIBPMG081	40	EFP1	1	5	Nitrile	Orifice bouché	7	G1/2"	944419Q
	EPF1110QIBPMG081	40	EFP1	1	10	Nitrile	Orifice bouché	7	G1/2"	944420Q
	EPF1120QIBPMG081	40	EFP1	1	20	Nitrile	Orifice bouché	7	G1/2"	944421Q
	EPF2205QIBPMG121	140	EPF2	2	5	Nitrile	Orifice bouché	7	G3/4"	944431Q
	EPF2210QIBPMG121	140	EPF2	2	10	Nitrile	Orifice bouché	7	G3/4"	944432Q
	EPF2220QIBPMG121	140	EPF2	2	20	Nitrile	Orifice bouché	7	G3/4"	944433Q
	EPF3205QIBPMG161	250	EPF3	2	5	Nitrile	Orifice bouché	7	G1"	944439Q
	EPF3210QIBPMG161	250	EPF3	2	10	Nitrile	Orifice bouché	7	G1"	944440Q
	EPF3220QIBPMG161	250	EPF3	2	20	Nitrile	Orifice bouché	7	G1"	944441Q
	EPF4205QIBPMG201	450	EPF4	2	5	Nitrile	Orifice bouché	7	G11/4"	944447Q
	EPF4210QIBPMG201	450	EPF4	2	10	Nitrile	Orifice bouché	7	G11/4"	944448Q
	EPF4220QIBPMG201	450	EPF4	2	20	Nitrile	Orifice bouché	7	G11/4"	944449Q
	EPF5105QIBPMG241	500	EPF5	1	5	Nitrile	Orifice bouché	7	G11/2"	944451Q
	EPF5110QIBPMG241	500	EPF5	1	10	Nitrile	Orifice bouché	7	G11/2"	944452Q
	EPF5120QIBPMG241	500	EPF5	1	20	Nitrile	Orifice bouché	7	G11/2"	944453Q

Indicateurs visuels	Référence	Tarage (bar)
	FMUM3MVMS08	5

Pour la référence des éléments filtrants voir page 130.

Indicateurs électriques	Référence	Tarage (bar)	Type de contact	Option
	FMUT1MVMS08	5	NO/N.F.	
	FMUF1MVMS08	5	N0	Électronique 4 LED, PNP
	FMUF2MVMS08	5	N0	Électronique 4 LED, NPN
	FMUF3MVMS08	5	N.F.	Électronique 4 LED, PNP
	FMUF4MVMS08	5	N.F.	Électronique 4 LED, NPN

Filtre haute pression

Codes de commande

Table 1	Table 2	Table 3	Table 4	Table 5	Table 6	Table 7	Table 8
EPF3	2	02QI	В	Р	М	G16	1

Table 1		
Capacité		
Modèle	Code	
Taille 1 (40 l/min)	EPF1	
Taille 2 (remplace 18P)	EPF2	
Taille 3 (remplace 28P)	EPF3	
Taille 4 (remplace 38P)	EPF4	
Taille 5	EPF5	

Table 2		
Longueur du filtre		
	Code	
Longueur 1	1	
Longueur 2 (pas pour les tailles 1 et 5)	2	

Code couleur de la disponibilité de la référence

123	Article standard	
123	Article standard « écologique »	
123	Article « semi-standard »	
123	Article non standard	

Table 3

Degré de filtration				
Code média				
02QI	05QI	10QI	20QI	
02QIR	05QIR	10QIR	20QIR	
02QIH	05QIH	10QIH	20QIH	
	02QI 02QIR	Code 02QI 05QI 02QIR 05QIR	Code média 02QI 05QI 10QI 02QIR 05QIR 10QIR	

Table 4

Type de joint		
	Code	
Nitrile	В	
Fluoroélastomère	V	

Table 5

Indicateur		
	Code	
Indicateur visuel	M3	
Indicateur électrique	T1	
Électronique 4 LED, PNP, N.O.	F1	
Électronique 4 LED, NPN, N.O.	F2	
Électronique 4 LED, PNP, N.F.	F3	
Électronique 4 LED, NPN, N.F.	F4	
Obturé avec un bouchon d'acier	Р	
Sans orifice pour indicateur	N	

Autres versions telles que ATEX sur demande Tous les indicateurs électriques sont certifiés CE

Table 6

Tarage du by-pass			
	Tarage de l'indicateur	Code	
3,5 bar	2,5 bar	К	
5,0 bar	3,5 bar	L	
7,0 bar	5,0 bar	М	
Sans bypass	5,0 bar	М	
Sans bypass	Sans indicateur	Х	

Remarques importantes : si aucun bypass n'est sélectionné, Parker conseille vivement d'utiliser des éléments filtrants à haute résistance à l'écrasement

Table 8

Options		
		Code
Standard		1
Sans bypass		2
Valve de débit inverse	Valve de protection uniquement en association avec un bypass de 3,5 bar	RFV
Certifié ATEX* (Catégorie 2, matériels non électriques)		EX

Note 1: avec l'option sans bypass, sélectionner les éléments de type QIH
Note 2": Pour les filtres classés ATEX, ajouter EX après le code.
Des filtres certifiés ATEX avec indicateur électrique sont disponibles sur demande.
Les indicateurs visuels sont classés dans la catégorie 2, matériel non électrique.
Les corps de filtre portant le code EX sont fournis avec une plaque signalétique dédiée.
Veuillez consulter Parker Filtration pour toute question relative à la classification de nos produits.

Table 7

Raccord de filtre		
	Type de raccord et taille	Code
Taille 1	Taraudage G½	G08
	Taraudage SAE 8	S08
Taille 2	Taraudage G½	G08
	Taraudage G¾	G12
	Taraudage SAE 12	S12
	Taraudage M27, ISO 6149	M27
	Bride SAE ¾ - 6000M	H12
	Bride SAE 3/4 - 6000	F12
	Flasquable	X12
Taille 3	Taraudage G1	G16
	Taraudage SAE 16	S16
	Taraudage M33, ISO 6149	M33
	Bride SAE 1 - 6000M	H16
	Bride SAE 1 - 6000	F16
Taille 4	Taraudage G1¼	G20
	Taraudage G1½	G24
	Taraudage SAE20	S20
	Taraudage SAE24	S24
	Taraudage M42, ISO 6149	M42
	Bride SAE 11/4 - 6000M	H20
	Bride SAE 11/4 - 6000	F20
	Flasquable	X20
Taille 5	Taraudage G1½	G24
	Taraudage SAE 24	S24
	Bride SAE 1½ - 6000M	H24
	Flasquable	X20

^{(*}Remarque: uniquement en association avec un bypass de 3,5 bar)